Article published in Ultrasonics

A joint work with Mahindra Rautela and Prof. S. Gopalakrishnan (Department of Aerospace Engineering, Indian Institute of Science, Bangalore, India) was accepted for publication in the journal of Ultrasonics.


Structural Health Monitoring of composite structures is one of the signifi cant challenges faced by the aerospace industry. A combined two-level damage identi fication viz damage detection and localization is performed in this paper for a composite panel using ultrasonic guided waves. A novel physical knowledge-assisted machine learning technique is proposed in which domain knowledge and expert supervision is utilized to assist the learning process. Two supervised learning-based convolutional neural networks are trained for damage detection (binary classi fication) and localization (multi-class classifi cation) on an experimental benchmark dataset. The performance of the trained models is evaluated using loss curve, accuracy, confusion matrix, and receiver-operating characteristics curve. It is observed that incorporating physical knowledge helps networks perform better than a direct deep learning approach. In this work, a combined damage identification strategy is proposed for a real-time application. In this strategy, the damage detection model works in an outer-loop and predicts the state of the structure (undamaged or damaged), whereas an inner-loop predicts the location of the damage only if the outer-loop detects damage. It is seen that the proposed technique o ffers advantages in terms of accuracy (above 99% for both detection and localization), computational time (prediction time per signal in milliseconds), sensor optimization, in-situ monitoring, and robustness towards the noise.

More information:

Rautela, M.; Senthilnath, J.; Moll, J. & Gopalakrishnan, S., Combined two-level damage identication strategy using ultrasonic guided waves and physical knowledge assisted machine learning, Ultrasonics, 2021,